Purification and crystallization of a trimodular complex comprising the type II cohesin-dockerin interaction from the cellulosome of Clostridium thermocellum.
نویسندگان
چکیده
The high-affinity calcium-mediated type II cohesin-dockerin interaction is responsible for the attachment of the multi-enzyme cellulose-degrading complex, termed the cellulosome, to the cell surface of the thermophilic anaerobe Clostridium thermocellum. A trimodular 40 kDa complex comprising the SdbA type II cohesin and the the CipA type II dockerin-X module modular pair from the cellulosome of C. thermocellum has been crystallized. The crystals belong to space group P2(1)2(1)2(1), with unit-cell parameters a = 45.21, b = 52.34, c = 154.69 A. The asymmetric unit contains one molecule of the protein complex and native and selenomethionine-derivative crystals diffracted to 2.1 and 2.0 A, respectively.
منابع مشابه
Probing the mechanism of cellulosome attachment to the Clostridium thermocellum cell surface: computer simulation of the Type II cohesin-dockerin complex and its variants.
The recalcitrance of lignocellulosic biomass to hydrolysis is the bottleneck in cellulosic ethanol production. Efficient degradation of biomass by the anaerobic bacterium Clostridium thermocellum is carried out by the multicomponent cellulosome complex. The bacterial cell-surface attachment of the cellulosome is mediated by high-affinity protein-protein interactions between the Type II cohesin ...
متن کاملStructural characterization of type II dockerin module from the cellulosome of Clostridium thermocellum: calcium-induced effects on conformation and target recognition.
The assembly of a functional cellulose-degrading complex termed the cellulosome involves two specific calcium-dependent cohesin-dockerin interactions: type I and type II. Extensive structural and mutagenesis studies have been performed on the type I modules and their interaction in an attempt to identify the underlying molecular determinants responsible for this specificity. However, very littl...
متن کاملSpecies-specificity of the cohesin-dockerin interaction between Clostridium thermocellum and Clostridium cellulolyticum: prediction of specificity determinants of the dockerin domain.
The cross-species specificity of the cohesin-dockerin interaction, which defines the incorporation of the enzymatic subunits into the cellulosome complex, has been investigated. Cohesin-containing segments from the cellulosomes of two different species, Clostridium thermocellum and Clostridium cellulolyticum, were allowed to interact with cellulosomal (dockerin-containing) enzymes from each spe...
متن کاملStoichiometric Assembly of the Cellulosome Generates Maximum Synergy for the Degradation of Crystalline Cellulose, as Revealed by In Vitro Reconstitution of the Clostridium thermocellum Cellulosome.
The cellulosome is a supramolecular multienzyme complex formed by species-specific interactions between the cohesin modules of scaffoldin proteins and the dockerin modules of a wide variety of polysaccharide-degrading enzymes. Cellulosomal enzymes bound to the scaffoldin protein act synergistically to degrade crystalline cellulose. However, there have been few attempts to reconstitute intact ce...
متن کاملCharacterization and subcellular localization of the Clostridium thermocellum scaffoldin dockerin binding protein SdbA.
This article reports the characterization of the Clostridium thermocellum SdbA protein thought to anchor the cellulosome to the bacterial cell surface. The NH2-terminal region of SdbA consists of a cohesin domain which specifically binds the dockerin domain of the cellulosomal scaffolding protein CipA. The COOH-terminal region consists of a triplicated segment, termed SLH repeats, which is pres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta crystallographica. Section F, Structural biology and crystallization communications
دوره 61 Pt 1 شماره
صفحات -
تاریخ انتشار 2005